Change in Connectivity in a Social Network over Time: A Bayesian Perspective
نویسندگان
چکیده
In this paper, we propose a Bayesian methodology for examining differences between statistics of a social network at two distinct points in time. The problem has been of interest for some time in the social networks community because it is quite difficult to test whether differences over time in statistics such as overall network connectivities are significant. Several issues make this problem challenging: links in a social network tend to be dependent, and the networks at the two different points in time are likely to be dependent as well. This implies, for example, that bootstrapping a social network to address this problem may be impractical. This paper expands on a previously published Bayesian version of the model for social networks with random effects, which allows for dependence between the edges of the networks. We use the software Winbugs to obtain posterior distributions for the difference in connectivity over time and for the correlation between each actor’s connectivities in the network at both points in time. We assume that this correlation is the same for all actors. We illustrate our methods with the case of a social network of collaborations (joint publications) between departments of a business university where interdisciplinary work was actively promoted. Our methods allow us to compare the tendency to make collaborative links across departments before and after the administrative initiatives. 1 p
منابع مشابه
Bayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملLeach Routing Algorithm Optimization through Imperialist Approach
Routing is an important challenge in WSN due to the presence of hundreds or thousands of sensor nodes. Low Energy Adaptive Clustering Hierarchy (LEACH) is a hierarchical routing and data dissemination protocol. LEACH divides a network domain into several sub-domains that are called clusters. Non-uniformity of cluster distribution and CHs selection without considering the positions of other sens...
متن کاملBayesian Estimation of Change Point in Phase One Risk Adjusted Control Charts
Use of risk adjusted control charts for monitoring patients’ surgical outcomes is now popular.These charts are developed based on considering the patient’s pre-operation risks. Change point detection is a crucial problem in statistical process control (SPC).It helpsthe managers toanalyzeroot causes of out-of-control conditions more effectively. Since the control chart signals do not necessarily...
متن کاملBayesian perspective over time
Thomas Bayes, the founder of Bayesian vision, entered the University of Edinburgh in 1719 to study logic and theology. Returning in 1722, he worked with his father in a small church. He also was a mathematician and in 1740 he made a novel discovery which he never published, but his friend Richard Price found it in his notes after his death in 1761, reedited it and published it. But until L...
متن کاملMonitoring of Social Network and Change Detection by Applying Statistical Process: ERGM
The statistical modeling of social network data needs much effort because of the complex dependence structure of the tie variables. In order to formulate such dependences, the statistical exponential families of distributions can provide a flexible structure. In this regard, the statistical characteristics of the network is provided to be encapsulated within an Exponential Random Graph Model (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008